Cargando…

Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development

BACKGROUND: The Arabidopsis SEUSS (SEU) gene encodes a transcriptional adaptor protein that is required for a diverse set of developmental events, including floral organ identity specification, as well as gynoecium, ovule and embryo development. In order to better understand the molecular mechanisms...

Descripción completa

Detalles Bibliográficos
Autores principales: Nole-Wilson, Staci, Rueschhoff, Elizabeth E, Bhatti, Huda, Franks, Robert G
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956547/
https://www.ncbi.nlm.nih.gov/pubmed/20836864
http://dx.doi.org/10.1186/1471-2229-10-198
Descripción
Sumario:BACKGROUND: The Arabidopsis SEUSS (SEU) gene encodes a transcriptional adaptor protein that is required for a diverse set of developmental events, including floral organ identity specification, as well as gynoecium, ovule and embryo development. In order to better understand the molecular mechanisms of SEUSS action we undertook a genetic modifier screen to identify seuss-modifier (sum) mutations. RESULTS: Screening of M2 lines representing approximately 5,000 M1 individuals identified mutations that enhance the seuss mutant phenotypic disruptions in ovules and gynoecia; here we describe the phenotype of the sum63 mutant and enhanced disruptions of ovule and gynoecial development in the seu sum63 double mutant. Mapping and genetic complementation tests indicate that sum63 is allelic to CYP85A2 (AT3G30180) a cytochrome p450 enzyme that catalyzes the final steps in the synthesis of the phytohormone brassinolide. CONCLUSIONS: Our identification of mutations in CYP85A2 as enhancers of the seuss mutant phenotype suggests a previously unrecognized role for brassinolide synthesis in gynoecial and ovule outer integument development. The work also suggests that seuss mutants may be more sensitive to the loss or reduction of brassinolide synthesis than are wild type plants.