Cargando…
Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation
BACKGROUND: Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within fo...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957393/ https://www.ncbi.nlm.nih.gov/pubmed/20920181 http://dx.doi.org/10.1186/1471-2180-10-249 |
_version_ | 1782188225610121216 |
---|---|
author | Calhoun, Leona N Liyanage, Rohana Lay, Jackson O Kwon, Young Min |
author_facet | Calhoun, Leona N Liyanage, Rohana Lay, Jackson O Kwon, Young Min |
author_sort | Calhoun, Leona N |
collection | PubMed |
description | BACKGROUND: Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress. RESULTS: In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted S. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted S. Enteritidis ∆dps and S. Enteritidis ∆cpxR were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation. CONCLUSIONS: This work reveals a significant difference in the proteomes of PA adapted and unadapted S. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance. |
format | Text |
id | pubmed-2957393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29573932010-10-21 Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation Calhoun, Leona N Liyanage, Rohana Lay, Jackson O Kwon, Young Min BMC Microbiol Research Article BACKGROUND: Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress. RESULTS: In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted S. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted S. Enteritidis ∆dps and S. Enteritidis ∆cpxR were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation. CONCLUSIONS: This work reveals a significant difference in the proteomes of PA adapted and unadapted S. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance. BioMed Central 2010-09-28 /pmc/articles/PMC2957393/ /pubmed/20920181 http://dx.doi.org/10.1186/1471-2180-10-249 Text en Copyright ©2010 Calhoun et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Calhoun, Leona N Liyanage, Rohana Lay, Jackson O Kwon, Young Min Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title | Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title_full | Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title_fullStr | Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title_full_unstemmed | Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title_short | Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation |
title_sort | proteomic analysis of salmonella enterica serovar enteritidis following propionate adaptation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957393/ https://www.ncbi.nlm.nih.gov/pubmed/20920181 http://dx.doi.org/10.1186/1471-2180-10-249 |
work_keys_str_mv | AT calhounleonan proteomicanalysisofsalmonellaentericaserovarenteritidisfollowingpropionateadaptation AT liyanagerohana proteomicanalysisofsalmonellaentericaserovarenteritidisfollowingpropionateadaptation AT layjacksono proteomicanalysisofsalmonellaentericaserovarenteritidisfollowingpropionateadaptation AT kwonyoungmin proteomicanalysisofsalmonellaentericaserovarenteritidisfollowingpropionateadaptation |