Cargando…
DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases
BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways sho...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957424/ https://www.ncbi.nlm.nih.gov/pubmed/20976054 http://dx.doi.org/10.1371/journal.pone.0013367 |
_version_ | 1782188230713540608 |
---|---|
author | Ulitsky, Igor Krishnamurthy, Akshay Karp, Richard M. Shamir, Ron |
author_facet | Ulitsky, Igor Krishnamurthy, Akshay Karp, Richard M. Shamir, Ron |
author_sort | Ulitsky, Igor |
collection | PubMed |
description | BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks), a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse). CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention. |
format | Text |
id | pubmed-2957424 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29574242010-10-25 DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases Ulitsky, Igor Krishnamurthy, Akshay Karp, Richard M. Shamir, Ron PLoS One Research Article BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks), a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse). CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention. Public Library of Science 2010-10-19 /pmc/articles/PMC2957424/ /pubmed/20976054 http://dx.doi.org/10.1371/journal.pone.0013367 Text en Ulitsky et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ulitsky, Igor Krishnamurthy, Akshay Karp, Richard M. Shamir, Ron DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title | DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title_full | DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title_fullStr | DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title_full_unstemmed | DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title_short | DEGAS: De Novo Discovery of Dysregulated Pathways in Human Diseases |
title_sort | degas: de novo discovery of dysregulated pathways in human diseases |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957424/ https://www.ncbi.nlm.nih.gov/pubmed/20976054 http://dx.doi.org/10.1371/journal.pone.0013367 |
work_keys_str_mv | AT ulitskyigor degasdenovodiscoveryofdysregulatedpathwaysinhumandiseases AT krishnamurthyakshay degasdenovodiscoveryofdysregulatedpathwaysinhumandiseases AT karprichardm degasdenovodiscoveryofdysregulatedpathwaysinhumandiseases AT shamirron degasdenovodiscoveryofdysregulatedpathwaysinhumandiseases |