Cargando…
A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct g...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957688/ https://www.ncbi.nlm.nih.gov/pubmed/21106127 http://dx.doi.org/10.1186/1471-2105-11-S7-S5 |
_version_ | 1782188249981124608 |
---|---|
author | Huqun* Fukuyama, Shun-ichiro Morino, Hiroyuki Miyazawa, Hiroshi Tanaka, Tomoaki Suzuki, Tomoko Kohda, Masakazu Kawakami, Hideshi Okazaki, Yasushi Seyama, Kuniaki Hagiwara, Koichi |
author_facet | Huqun* Fukuyama, Shun-ichiro Morino, Hiroyuki Miyazawa, Hiroshi Tanaka, Tomoaki Suzuki, Tomoko Kohda, Masakazu Kawakami, Hideshi Okazaki, Yasushi Seyama, Kuniaki Hagiwara, Koichi |
author_sort | Huqun* |
collection | PubMed |
description | Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data. |
format | Text |
id | pubmed-2957688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29576882010-10-21 A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data Huqun* Fukuyama, Shun-ichiro Morino, Hiroyuki Miyazawa, Hiroshi Tanaka, Tomoaki Suzuki, Tomoko Kohda, Masakazu Kawakami, Hideshi Okazaki, Yasushi Seyama, Kuniaki Hagiwara, Koichi BMC Bioinformatics Proceedings Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data. BioMed Central 2010-10-15 /pmc/articles/PMC2957688/ /pubmed/21106127 http://dx.doi.org/10.1186/1471-2105-11-S7-S5 Text en Copyright ©2010 Huqun et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Huqun* Fukuyama, Shun-ichiro Morino, Hiroyuki Miyazawa, Hiroshi Tanaka, Tomoaki Suzuki, Tomoko Kohda, Masakazu Kawakami, Hideshi Okazaki, Yasushi Seyama, Kuniaki Hagiwara, Koichi A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title | A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title_full | A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title_fullStr | A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title_full_unstemmed | A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title_short | A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data |
title_sort | quantitatively-modeled homozygosity mapping algorithm, qhomozygositymapping, utilizing whole genome single nucleotide polymorphism genotyping data |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957688/ https://www.ncbi.nlm.nih.gov/pubmed/21106127 http://dx.doi.org/10.1186/1471-2105-11-S7-S5 |
work_keys_str_mv | AT huqun aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT fukuyamashunichiro aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT morinohiroyuki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT miyazawahiroshi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT tanakatomoaki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT suzukitomoko aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT kohdamasakazu aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT kawakamihideshi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT okazakiyasushi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT seyamakuniaki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT hagiwarakoichi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT huqun quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT fukuyamashunichiro quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT morinohiroyuki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT miyazawahiroshi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT tanakatomoaki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT suzukitomoko quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT kohdamasakazu quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT kawakamihideshi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT okazakiyasushi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT seyamakuniaki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata AT hagiwarakoichi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata |