Cargando…

A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data

Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct g...

Descripción completa

Detalles Bibliográficos
Autores principales: Huqun*, Fukuyama, Shun-ichiro, Morino, Hiroyuki, Miyazawa, Hiroshi, Tanaka, Tomoaki, Suzuki, Tomoko, Kohda, Masakazu, Kawakami, Hideshi, Okazaki, Yasushi, Seyama, Kuniaki, Hagiwara, Koichi
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957688/
https://www.ncbi.nlm.nih.gov/pubmed/21106127
http://dx.doi.org/10.1186/1471-2105-11-S7-S5
_version_ 1782188249981124608
author Huqun*
Fukuyama, Shun-ichiro
Morino, Hiroyuki
Miyazawa, Hiroshi
Tanaka, Tomoaki
Suzuki, Tomoko
Kohda, Masakazu
Kawakami, Hideshi
Okazaki, Yasushi
Seyama, Kuniaki
Hagiwara, Koichi
author_facet Huqun*
Fukuyama, Shun-ichiro
Morino, Hiroyuki
Miyazawa, Hiroshi
Tanaka, Tomoaki
Suzuki, Tomoko
Kohda, Masakazu
Kawakami, Hideshi
Okazaki, Yasushi
Seyama, Kuniaki
Hagiwara, Koichi
author_sort Huqun*
collection PubMed
description Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data.
format Text
id pubmed-2957688
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29576882010-10-21 A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data Huqun* Fukuyama, Shun-ichiro Morino, Hiroyuki Miyazawa, Hiroshi Tanaka, Tomoaki Suzuki, Tomoko Kohda, Masakazu Kawakami, Hideshi Okazaki, Yasushi Seyama, Kuniaki Hagiwara, Koichi BMC Bioinformatics Proceedings Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data. BioMed Central 2010-10-15 /pmc/articles/PMC2957688/ /pubmed/21106127 http://dx.doi.org/10.1186/1471-2105-11-S7-S5 Text en Copyright ©2010 Huqun et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Huqun*
Fukuyama, Shun-ichiro
Morino, Hiroyuki
Miyazawa, Hiroshi
Tanaka, Tomoaki
Suzuki, Tomoko
Kohda, Masakazu
Kawakami, Hideshi
Okazaki, Yasushi
Seyama, Kuniaki
Hagiwara, Koichi
A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title_full A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title_fullStr A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title_full_unstemmed A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title_short A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data
title_sort quantitatively-modeled homozygosity mapping algorithm, qhomozygositymapping, utilizing whole genome single nucleotide polymorphism genotyping data
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957688/
https://www.ncbi.nlm.nih.gov/pubmed/21106127
http://dx.doi.org/10.1186/1471-2105-11-S7-S5
work_keys_str_mv AT huqun aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT fukuyamashunichiro aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT morinohiroyuki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT miyazawahiroshi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT tanakatomoaki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT suzukitomoko aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT kohdamasakazu aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT kawakamihideshi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT okazakiyasushi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT seyamakuniaki aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT hagiwarakoichi aquantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT huqun quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT fukuyamashunichiro quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT morinohiroyuki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT miyazawahiroshi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT tanakatomoaki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT suzukitomoko quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT kohdamasakazu quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT kawakamihideshi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT okazakiyasushi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT seyamakuniaki quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata
AT hagiwarakoichi quantitativelymodeledhomozygositymappingalgorithmqhomozygositymappingutilizingwholegenomesinglenucleotidepolymorphismgenotypingdata