Cargando…

Novel Functional Aspect of Antihistamines: The Impact of Bepotastine Besilate on Substance P-Induced Events

Besides histamine, substance P (SP) has been demonstrated to play a crucial role in pruritic skin diseases. Although antihistamines are frequently used for pruritic skin diseases, little is known concerning the effect on an SP-induced event such as mast cell degranulation and the upregulation of adh...

Descripción completa

Detalles Bibliográficos
Autores principales: Kitaba, Shun, Murota, Hiroyuki, Yahata, Yoko, Azukizawa, Hiroaki, Katayama, Ichiro
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958303/
https://www.ncbi.nlm.nih.gov/pubmed/20975801
http://dx.doi.org/10.1155/2009/853687
Descripción
Sumario:Besides histamine, substance P (SP) has been demonstrated to play a crucial role in pruritic skin diseases. Although antihistamines are frequently used for pruritic skin diseases, little is known concerning the effect on an SP-induced event such as mast cell degranulation and the upregulation of adhesion molecules or the nitric oxide (NO) synthesis in endothelial cells. Our aim was to study the effect of bepotastine besilate on SP-induced degranulation of rat basophillic leukemia (RBL-2H3) cells and expression of adhesion molecules and NO synthesis in human dermal microvascular endothelial cells (HMVECs). Bepotastine besilate significantly inhibited SP-induced degranulation of RBL-2H3 cells and NO synthesis in HMVECs. Bepotastine besilate significantly inhibited expression of adhesion molecules in HMVESs, while it failed to suppress SP-induced upregulation of the adhesion molecules in HMVECs. Therefore, bepotastine besilate is assumed to act favorably on SP-induced basophil degranulation and NO synthesis in HMVECs.