Cargando…

The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children

BACKGROUND: The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Vigan-Womas, Inès, Lokossou, Adjimon, Guillotte, Micheline, Juillerat, Alexandre, Bentley, Graham, Garcia, André, Mercereau-Puijalon, Odile, Migot-Nabias, Florence
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2959068/
https://www.ncbi.nlm.nih.gov/pubmed/20923548
http://dx.doi.org/10.1186/1475-2875-9-267
Descripción
Sumario:BACKGROUND: The capacity of Plasmodium falciparum-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic P. falciparum infection. METHODS: Serum was collected from Beninese children with severe malaria, uncomplicated malaria or P. falciparum asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α(1), CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children. RESULTS: Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α(1). None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies. CONCLUSIONS: Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.