Cargando…
Process Design and Economics of On-Site Cellulase Production on Various Carbon Sources in a Softwood-Based Ethanol Plant
On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect o...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2962911/ https://www.ncbi.nlm.nih.gov/pubmed/21048869 http://dx.doi.org/10.4061/2010/734182 |
Sumario: | On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5–16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60–78% of the enzyme production cost, which was in the range of 0.42–0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative. |
---|