Cargando…

Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS

Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Allsopp, Rebecca C., Lalo, Ulyana, Evans, Richard J.
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963349/
https://www.ncbi.nlm.nih.gov/pubmed/20699225
http://dx.doi.org/10.1074/jbc.M110.148940
_version_ 1782189270032711680
author Allsopp, Rebecca C.
Lalo, Ulyana
Evans, Richard J.
author_facet Allsopp, Rebecca C.
Lalo, Ulyana
Evans, Richard J.
author_sort Allsopp, Rebecca C.
collection PubMed
description Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement.
format Text
id pubmed-2963349
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-29633492010-10-25 Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS Allsopp, Rebecca C. Lalo, Ulyana Evans, Richard J. J Biol Chem Lipids Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement. American Society for Biochemistry and Molecular Biology 2010-10-22 2010-08-10 /pmc/articles/PMC2963349/ /pubmed/20699225 http://dx.doi.org/10.1074/jbc.M110.148940 Text en © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles
spellingShingle Lipids
Allsopp, Rebecca C.
Lalo, Ulyana
Evans, Richard J.
Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title_full Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title_fullStr Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title_full_unstemmed Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title_short Lipid Raft Association and Cholesterol Sensitivity of P2X1-4 Receptors for ATP: CHIMERAS AND POINT MUTANTS IDENTIFY INTRACELLULAR AMINO-TERMINAL RESIDUES INVOLVED IN LIPID REGULATION OF P2X1 RECEPTORS
title_sort lipid raft association and cholesterol sensitivity of p2x1-4 receptors for atp: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of p2x1 receptors
topic Lipids
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963349/
https://www.ncbi.nlm.nih.gov/pubmed/20699225
http://dx.doi.org/10.1074/jbc.M110.148940
work_keys_str_mv AT allsopprebeccac lipidraftassociationandcholesterolsensitivityofp2x14receptorsforatpchimerasandpointmutantsidentifyintracellularaminoterminalresiduesinvolvedinlipidregulationofp2x1receptors
AT laloulyana lipidraftassociationandcholesterolsensitivityofp2x14receptorsforatpchimerasandpointmutantsidentifyintracellularaminoterminalresiduesinvolvedinlipidregulationofp2x1receptors
AT evansrichardj lipidraftassociationandcholesterolsensitivityofp2x14receptorsforatpchimerasandpointmutantsidentifyintracellularaminoterminalresiduesinvolvedinlipidregulationofp2x1receptors