Cargando…
Module Discovery by Exhaustive Search for Densely Connected, Co-Expressed Regions in Biomolecular Interaction Networks
BACKGROUND: Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustiv...
Autores principales: | Colak, Recep, Moser, Flavia, Chu, Jeffrey Shih-Chieh, Schönhuth, Alexander, Chen, Nansheng, Ester, Martin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963598/ https://www.ncbi.nlm.nih.gov/pubmed/21049092 http://dx.doi.org/10.1371/journal.pone.0013348 |
Ejemplares similares
-
Correction: Module Discovery by Exhaustive Search for Densely Connected, Co-Expressed Regions in Biomolecular Interaction Networks
por: Colak, Recep, et al.
Publicado: (2010) -
Inferring cancer subnetwork markers using density-constrained biclustering
por: Dao, Phuong, et al.
Publicado: (2010) -
Automatic Search Dense Connection Module for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Densely Packed Microgoblet Laser Pairs for Cross‐Referenced Biomolecular Detection
por: Bog, Uwe, et al.
Publicado: (2015) -
Pattern discovery in biomolecular data : tools, techniques, and applications
Publicado: (1999)