Cargando…
NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein−Ligand Complexes
[Image: see text] As high-throughput biochemical screens are both expensive and labor intensive, researchers in academia and industry are turning increasingly to virtual-screening methodologies. Virtual screening relies on scoring functions to quickly assess ligand potency. Although useful for in si...
Autores principales: | Durrant, Jacob D., McCammon, J. Andrew |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2010
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964041/ https://www.ncbi.nlm.nih.gov/pubmed/20845954 http://dx.doi.org/10.1021/ci100244v |
Ejemplares similares
-
NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function
por: Durrant, Jacob D., et al.
Publicado: (2011) -
Comparing Neural-Network Scoring Functions and the
State of the Art: Applications to Common Library Screening
por: Durrant, Jacob D., et al.
Publicado: (2013) -
LigMerge: A Fast Algorithm to Generate Models of Novel Potential Ligands from Sets of Known Binders
por: Lindert, Steffen, et al.
Publicado: (2012) -
Enhanced Ligand Sampling for Relative Protein–Ligand
Binding Free Energy Calculations
por: Kaus, Joseph W., et al.
Publicado: (2015) -
AutoClickChem: Click Chemistry in Silico
por: Durrant, Jacob D., et al.
Publicado: (2012)