Cargando…

Epigenetic control of embryonic stem cell fate

Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also b...

Descripción completa

Detalles Bibliográficos
Autores principales: Christophersen, Nicolaj Strøyer, Helin, Kristian
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964577/
https://www.ncbi.nlm.nih.gov/pubmed/20975044
http://dx.doi.org/10.1084/jem.20101438
Descripción
Sumario:Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the “stemness” properties of these cells. Identifying the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell fate, focusing on two major repressive pathways, Polycomb group (PcG) repressive complexes and promoter DNA methylation.