Cargando…
Epigenetic control of embryonic stem cell fate
Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also b...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964577/ https://www.ncbi.nlm.nih.gov/pubmed/20975044 http://dx.doi.org/10.1084/jem.20101438 |
_version_ | 1782189389398409216 |
---|---|
author | Christophersen, Nicolaj Strøyer Helin, Kristian |
author_facet | Christophersen, Nicolaj Strøyer Helin, Kristian |
author_sort | Christophersen, Nicolaj Strøyer |
collection | PubMed |
description | Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the “stemness” properties of these cells. Identifying the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell fate, focusing on two major repressive pathways, Polycomb group (PcG) repressive complexes and promoter DNA methylation. |
format | Text |
id | pubmed-2964577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29645772011-04-25 Epigenetic control of embryonic stem cell fate Christophersen, Nicolaj Strøyer Helin, Kristian J Exp Med Review Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the “stemness” properties of these cells. Identifying the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell fate, focusing on two major repressive pathways, Polycomb group (PcG) repressive complexes and promoter DNA methylation. The Rockefeller University Press 2010-10-25 /pmc/articles/PMC2964577/ /pubmed/20975044 http://dx.doi.org/10.1084/jem.20101438 Text en © 2010 Christophersen and Helin This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Review Christophersen, Nicolaj Strøyer Helin, Kristian Epigenetic control of embryonic stem cell fate |
title | Epigenetic control of embryonic stem cell fate |
title_full | Epigenetic control of embryonic stem cell fate |
title_fullStr | Epigenetic control of embryonic stem cell fate |
title_full_unstemmed | Epigenetic control of embryonic stem cell fate |
title_short | Epigenetic control of embryonic stem cell fate |
title_sort | epigenetic control of embryonic stem cell fate |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964577/ https://www.ncbi.nlm.nih.gov/pubmed/20975044 http://dx.doi.org/10.1084/jem.20101438 |
work_keys_str_mv | AT christophersennicolajstrøyer epigeneticcontrolofembryonicstemcellfate AT helinkristian epigeneticcontrolofembryonicstemcellfate |