Cargando…
Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga mar...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964679/ https://www.ncbi.nlm.nih.gov/pubmed/20950419 http://dx.doi.org/10.1186/1471-2180-10-260 |
_version_ | 1782189410125611008 |
---|---|
author | Olszewski, Marcin Grot, Anna Wojciechowski, Marek Nowak, Marta Mickiewicz, Małgorzata Kur, Józef |
author_facet | Olszewski, Marcin Grot, Anna Wojciechowski, Marek Nowak, Marta Mickiewicz, Małgorzata Kur, Józef |
author_sort | Olszewski, Marcin |
collection | PubMed |
description | BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (T(m)) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. CONCLUSION: The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR). |
format | Text |
id | pubmed-2964679 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29646792010-10-28 Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana Olszewski, Marcin Grot, Anna Wojciechowski, Marek Nowak, Marta Mickiewicz, Małgorzata Kur, Józef BMC Microbiol Research Article BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (T(m)) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. CONCLUSION: The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR). BioMed Central 2010-10-15 /pmc/articles/PMC2964679/ /pubmed/20950419 http://dx.doi.org/10.1186/1471-2180-10-260 Text en Copyright ©2010 Olszewski et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Olszewski, Marcin Grot, Anna Wojciechowski, Marek Nowak, Marta Mickiewicz, Małgorzata Kur, Józef Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title | Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title_full | Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title_fullStr | Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title_full_unstemmed | Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title_short | Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana |
title_sort | characterization of exceptionally thermostable single-stranded dna-binding proteins from thermotoga maritima and thermotoga neapolitana |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964679/ https://www.ncbi.nlm.nih.gov/pubmed/20950419 http://dx.doi.org/10.1186/1471-2180-10-260 |
work_keys_str_mv | AT olszewskimarcin characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana AT grotanna characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana AT wojciechowskimarek characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana AT nowakmarta characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana AT mickiewiczmałgorzata characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana AT kurjozef characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana |