Cargando…

Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga mar...

Descripción completa

Detalles Bibliográficos
Autores principales: Olszewski, Marcin, Grot, Anna, Wojciechowski, Marek, Nowak, Marta, Mickiewicz, Małgorzata, Kur, Józef
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964679/
https://www.ncbi.nlm.nih.gov/pubmed/20950419
http://dx.doi.org/10.1186/1471-2180-10-260
_version_ 1782189410125611008
author Olszewski, Marcin
Grot, Anna
Wojciechowski, Marek
Nowak, Marta
Mickiewicz, Małgorzata
Kur, Józef
author_facet Olszewski, Marcin
Grot, Anna
Wojciechowski, Marek
Nowak, Marta
Mickiewicz, Małgorzata
Kur, Józef
author_sort Olszewski, Marcin
collection PubMed
description BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (T(m)) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. CONCLUSION: The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).
format Text
id pubmed-2964679
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29646792010-10-28 Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana Olszewski, Marcin Grot, Anna Wojciechowski, Marek Nowak, Marta Mickiewicz, Małgorzata Kur, Józef BMC Microbiol Research Article BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (T(m)) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. CONCLUSION: The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR). BioMed Central 2010-10-15 /pmc/articles/PMC2964679/ /pubmed/20950419 http://dx.doi.org/10.1186/1471-2180-10-260 Text en Copyright ©2010 Olszewski et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Olszewski, Marcin
Grot, Anna
Wojciechowski, Marek
Nowak, Marta
Mickiewicz, Małgorzata
Kur, Józef
Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title_full Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title_fullStr Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title_full_unstemmed Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title_short Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana
title_sort characterization of exceptionally thermostable single-stranded dna-binding proteins from thermotoga maritima and thermotoga neapolitana
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964679/
https://www.ncbi.nlm.nih.gov/pubmed/20950419
http://dx.doi.org/10.1186/1471-2180-10-260
work_keys_str_mv AT olszewskimarcin characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana
AT grotanna characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana
AT wojciechowskimarek characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana
AT nowakmarta characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana
AT mickiewiczmałgorzata characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana
AT kurjozef characterizationofexceptionallythermostablesinglestrandeddnabindingproteinsfromthermotogamaritimaandthermotoganeapolitana