Cargando…
Evolution and polymorphism in the multilocus Levene model with no or weak epistasis
Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and unde...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965013/ https://www.ncbi.nlm.nih.gov/pubmed/20561538 http://dx.doi.org/10.1016/j.tpb.2010.06.002 |
Sumario: | Evolution and the maintenance of polymorphism under the multilocus Levene model with soft selection are studied. The number of loci and alleles, the number of demes, the linkage map, and the degree of dominance are arbitrary, but epistasis is absent or weak. We prove that, without epistasis and under mild, generic conditions, every trajectory converges to a stationary point in linkage equilibrium. Consequently, the equilibrium and stability structure can be determined by investigating the much simpler gene-frequency dynamics on the linkage-equilibrium manifold. For a haploid species an analogous result is shown. For weak epistasis, global convergence to quasi-linkage equilibrium is established. As an application, the maintenance of multilocus polymorphism is explored if the degree of dominance is intermediate at every locus and epistasis is absent or weak. If there are at least two demes, then arbitrarily many multiallelic loci can be maintained polymorphic at a globally asymptotically stable equilibrium. Because this holds for an open set of parameters, such equilibria are structurally stable. If the degree of dominance is not only intermediate but also deme independent, and loci are diallelic, an open set of parameters yielding an internal equilibrium exists only if the number of loci is strictly less than the number of demes. Otherwise, a fully polymorphic equilibrium exists only nongenerically, and if it exists, it consists of a manifold of equilibria. Its dimension is determined. In the absence of genotype-by-environment interaction, however, a manifold of equilibria occurs for an open set of parameters. In this case, the equilibrium structure is not robust to small deviations from no genotype-by-environment interaction. In a quantitative-genetic setting, the assumptions of no epistasis and intermediate dominance are equivalent to assuming that in every deme directional selection acts on a trait that is determined additively, i.e., by nonepistatic loci with dominance. Some of our results are exemplified in this quantitative-genetic context. |
---|