Cargando…
Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity
Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all anal...
Autores principales: | Bill, Johannes, Schuch, Klaus, Brüderle, Daniel, Schemmel, Johannes, Maass, Wolfgang, Meier, Karlheinz |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965017/ https://www.ncbi.nlm.nih.gov/pubmed/21031027 http://dx.doi.org/10.3389/fncom.2010.00129 |
Ejemplares similares
-
Verifying the biological relevance of a neuromorphic hardware device
por: Brüderle, Daniel, et al.
Publicado: (2007) -
Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System
por: Brüderle, Daniel, et al.
Publicado: (2009) -
Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware
por: Pfeil, Thomas, et al.
Publicado: (2012) -
Control of criticality and computation in spiking neuromorphic networks with plasticity
por: Cramer, Benjamin, et al.
Publicado: (2020) -
Six Networks on a Universal Neuromorphic Computing Substrate
por: Pfeil, Thomas, et al.
Publicado: (2013)