Cargando…

Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism

Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue...

Descripción completa

Detalles Bibliográficos
Autores principales: Grava, Sandrine, Philippsen, Peter
Formato: Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965685/
https://www.ncbi.nlm.nih.gov/pubmed/20844079
http://dx.doi.org/10.1091/mbc.E10-06-0527
_version_ 1782189526262743040
author Grava, Sandrine
Philippsen, Peter
author_facet Grava, Sandrine
Philippsen, Peter
author_sort Grava, Sandrine
collection PubMed
description Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities.
format Text
id pubmed-2965685
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-29656852011-01-16 Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism Grava, Sandrine Philippsen, Peter Mol Biol Cell Articles Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities. The American Society for Cell Biology 2010-11-01 /pmc/articles/PMC2965685/ /pubmed/20844079 http://dx.doi.org/10.1091/mbc.E10-06-0527 Text en © 2010 by The American Society for Cell Biology This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
spellingShingle Articles
Grava, Sandrine
Philippsen, Peter
Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title_full Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title_fullStr Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title_full_unstemmed Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title_short Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism
title_sort dynamics of multiple nuclei in ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by bik1, kip2, kip3, and not on a capture/shrinkage mechanism
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965685/
https://www.ncbi.nlm.nih.gov/pubmed/20844079
http://dx.doi.org/10.1091/mbc.E10-06-0527
work_keys_str_mv AT gravasandrine dynamicsofmultiplenucleiinashbyagossypiihyphaedependonthecontrolofcytoplasmicmicrotubuleslengthbybik1kip2kip3andnotonacaptureshrinkagemechanism
AT philippsenpeter dynamicsofmultiplenucleiinashbyagossypiihyphaedependonthecontrolofcytoplasmicmicrotubuleslengthbybik1kip2kip3andnotonacaptureshrinkagemechanism