Cargando…
A machine learning pipeline for quantitative phenotype prediction from genotype data
BACKGROUND: Quantitative phenotypes emerge everywhere in systems biology and biomedicine due to a direct interest for quantitative traits, or to high individual variability that makes hard or impossible to classify samples into distinct categories, often the case with complex common diseases. Machin...
Autores principales: | Guzzetta, Giorgio, Jurman, Giuseppe, Furlanello, Cesare |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966290/ https://www.ncbi.nlm.nih.gov/pubmed/21034428 http://dx.doi.org/10.1186/1471-2105-11-S8-S3 |
Ejemplares similares
-
Predictability of drug-induced liver injury by machine learning
por: Chierici, Marco, et al.
Publicado: (2020) -
Entropy-based gene ranking without selection bias for the predictive classification of microarray data
por: Furlanello, Cesare, et al.
Publicado: (2003) -
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
por: Jurman, Giuseppe, et al.
Publicado: (2012) -
DTW-MIC Coexpression Networks from Time-Course Data
por: Riccadonna, Samantha, et al.
Publicado: (2016) -
Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma
por: Maggio, Valerio, et al.
Publicado: (2018)