Cargando…
Inferring latent task structure for Multitask Learning by Multiple Kernel Learning
BACKGROUND: The lack of sufficient training data is the limiting factor for many Machine Learning applications in Computational Biology. If data is available for several different but related problem domains, Multitask Learning algorithms can be used to learn a model based on all available informati...
Autores principales: | Widmer, Christian, Toussaint, Nora C, Altun, Yasemin, Rätsch, Gunnar |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966292/ https://www.ncbi.nlm.nih.gov/pubmed/21034430 http://dx.doi.org/10.1186/1471-2105-11-S8-S5 |
Ejemplares similares
-
Exploiting physico-chemical properties in string kernels
por: Toussaint, Nora C, et al.
Publicado: (2010) -
Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer's Disease
por: Liu, Xiaoli, et al.
Publicado: (2018) -
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014) -
Task Integration Facilitates Multitasking
por: de Oliveira, Rita F., et al.
Publicado: (2017) -
Efficient multitasking: parallel versus serial processing of multiple tasks
por: Fischer, Rico, et al.
Publicado: (2015)