Cargando…
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
BACKGROUND: Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a prot...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966293/ https://www.ncbi.nlm.nih.gov/pubmed/21034431 http://dx.doi.org/10.1186/1471-2105-11-S8-S6 |
_version_ | 1782189567348047872 |
---|---|
author | Caragea, Cornelia Caragea, Doina Silvescu, Adrian Honavar, Vasant |
author_facet | Caragea, Cornelia Caragea, Doina Silvescu, Adrian Honavar, Vasant |
author_sort | Caragea, Cornelia |
collection | PubMed |
description | BACKGROUND: Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing interest in developing semi-supervised methods for predicting protein subcellular localization from large amounts of unlabeled data together with small amounts of labeled data. RESULTS: In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in exploiting unlabeled data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to semi-supervised training of MMs (that make use of unlabeled data). CONCLUSIONS: The results of our experiments on three protein subcellular localization data sets show that semi-supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-training based semi-supervised MMs. |
format | Text |
id | pubmed-2966293 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29662932010-10-30 Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models Caragea, Cornelia Caragea, Doina Silvescu, Adrian Honavar, Vasant BMC Bioinformatics Research BACKGROUND: Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing interest in developing semi-supervised methods for predicting protein subcellular localization from large amounts of unlabeled data together with small amounts of labeled data. RESULTS: In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in exploiting unlabeled data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to semi-supervised training of MMs (that make use of unlabeled data). CONCLUSIONS: The results of our experiments on three protein subcellular localization data sets show that semi-supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-training based semi-supervised MMs. BioMed Central 2010-10-26 /pmc/articles/PMC2966293/ /pubmed/21034431 http://dx.doi.org/10.1186/1471-2105-11-S8-S6 Text en Copyright ©2010 Caragea et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Caragea, Cornelia Caragea, Doina Silvescu, Adrian Honavar, Vasant Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title | Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title_full | Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title_fullStr | Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title_full_unstemmed | Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title_short | Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models |
title_sort | semi-supervised prediction of protein subcellular localization using abstraction augmented markov models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966293/ https://www.ncbi.nlm.nih.gov/pubmed/21034431 http://dx.doi.org/10.1186/1471-2105-11-S8-S6 |
work_keys_str_mv | AT carageacornelia semisupervisedpredictionofproteinsubcellularlocalizationusingabstractionaugmentedmarkovmodels AT carageadoina semisupervisedpredictionofproteinsubcellularlocalizationusingabstractionaugmentedmarkovmodels AT silvescuadrian semisupervisedpredictionofproteinsubcellularlocalizationusingabstractionaugmentedmarkovmodels AT honavarvasant semisupervisedpredictionofproteinsubcellularlocalizationusingabstractionaugmentedmarkovmodels |