Cargando…
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models
BACKGROUND: Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a prot...
Autores principales: | Caragea, Cornelia, Caragea, Doina, Silvescu, Adrian, Honavar, Vasant |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966293/ https://www.ncbi.nlm.nih.gov/pubmed/21034431 http://dx.doi.org/10.1186/1471-2105-11-S8-S6 |
Ejemplares similares
-
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
por: Caragea, Cornelia, et al.
Publicado: (2007) -
Protein sequence classification using feature hashing
por: Caragea, Cornelia, et al.
Publicado: (2012) -
An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets
por: Stanescu, Ana, et al.
Publicado: (2015) -
Mixture of experts models to exploit global sequence similarity on biomolecular sequence labeling
por: Caragea, Cornelia, et al.
Publicado: (2009) -
Semi-supervised protein subcellular localization
por: Xu, Qian, et al.
Publicado: (2009)