Cargando…
Exploiting physico-chemical properties in string kernels
BACKGROUND: String kernels are commonly used for the classification of biological sequences, nucleotide as well as amino acid sequences. Although string kernels are already very powerful, when it comes to amino acids they have a major short coming. They ignore an important piece of information when...
Autores principales: | Toussaint, Nora C, Widmer, Christian, Kohlbacher, Oliver, Rätsch, Gunnar |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966294/ https://www.ncbi.nlm.nih.gov/pubmed/21034432 http://dx.doi.org/10.1186/1471-2105-11-S8-S7 |
Ejemplares similares
-
Inferring latent task structure for Multitask Learning by Multiple Kernel Learning
por: Widmer, Christian, et al.
Publicado: (2010) -
KIRMES: kernel-based identification of regulatory modules in euchromatic sequences
por: Schultheiss, Sebastian J, et al.
Publicado: (2009) -
KIRMES: kernel-based identification of regulatory modules in euchromatic sequences
por: Schultheiss, Sebastian J., et al.
Publicado: (2009) -
POPISK: T-cell reactivity prediction using support vector machines and string kernels
por: Tung, Chun-Wei, et al.
Publicado: (2011) -
Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients
por: Kahles, André, et al.
Publicado: (2018)