Cargando…

Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the first exon of the gene Huntingtin (Htt). A dramatic pathological change in HD is the massive loss of striatal neurons as the disease progresses. A useful advance in HD would be the g...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ningzhe, An, Mahru C., Montoro, Daniel, Ellerby, Lisa M.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966296/
https://www.ncbi.nlm.nih.gov/pubmed/21037797
http://dx.doi.org/10.1371/currents.RRN1193
Descripción
Sumario:Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the first exon of the gene Huntingtin (Htt). A dramatic pathological change in HD is the massive loss of striatal neurons as the disease progresses. A useful advance in HD would be the generation of a human-derived HD model to use for drug screening and understanding mechanisms of HD. We utilized the recently established human iPS cell line derived from HD patient fibroblasts to derive neuronal precursors and human striatal neurons. To achieve this goal, the differentiation of the HD-iPS cells into striatal fate required several steps. First, we generated nestin+/PAX6+/SOX1+/OCT4- neural stem cells (NSCs) from HD-iPS cells using the method of embryoid body formation. HD-NSCs were then subjected to a differentiation condition combining morphogens and neurotrophins to induce striatal lineage commitment. Striatal neuronal precursors/immature neurons stained with β-III tubulin, calbindin and GABA but not DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) were produced in this step. Finally, maturation and terminal differentiation of the striatal neuronal precursors/immature neurons resulted in striatal neurons expressing markers like DARPP-32. The HD-iPS cells derived striatal neurons and neuronal precursors contain the same CAG expansion as the mutation in the HD patient from whom the iPS cell line was established. Moreover, the HD-NSCs showed enhanced caspase activity upon growth factor deprivation compared to normal NSCs (from iPS or H9 NSCs). Therefore, these differentiated cells may produce a human HD cell model useful in the study of HD mechanisms and drug screening.