Cargando…
Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells
Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the first exon of the gene Huntingtin (Htt). A dramatic pathological change in HD is the massive loss of striatal neurons as the disease progresses. A useful advance in HD would be the g...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966296/ https://www.ncbi.nlm.nih.gov/pubmed/21037797 http://dx.doi.org/10.1371/currents.RRN1193 |
_version_ | 1782189568074711040 |
---|---|
author | Zhang, Ningzhe An, Mahru C. Montoro, Daniel Ellerby, Lisa M. |
author_facet | Zhang, Ningzhe An, Mahru C. Montoro, Daniel Ellerby, Lisa M. |
author_sort | Zhang, Ningzhe |
collection | PubMed |
description | Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the first exon of the gene Huntingtin (Htt). A dramatic pathological change in HD is the massive loss of striatal neurons as the disease progresses. A useful advance in HD would be the generation of a human-derived HD model to use for drug screening and understanding mechanisms of HD. We utilized the recently established human iPS cell line derived from HD patient fibroblasts to derive neuronal precursors and human striatal neurons. To achieve this goal, the differentiation of the HD-iPS cells into striatal fate required several steps. First, we generated nestin+/PAX6+/SOX1+/OCT4- neural stem cells (NSCs) from HD-iPS cells using the method of embryoid body formation. HD-NSCs were then subjected to a differentiation condition combining morphogens and neurotrophins to induce striatal lineage commitment. Striatal neuronal precursors/immature neurons stained with β-III tubulin, calbindin and GABA but not DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) were produced in this step. Finally, maturation and terminal differentiation of the striatal neuronal precursors/immature neurons resulted in striatal neurons expressing markers like DARPP-32. The HD-iPS cells derived striatal neurons and neuronal precursors contain the same CAG expansion as the mutation in the HD patient from whom the iPS cell line was established. Moreover, the HD-NSCs showed enhanced caspase activity upon growth factor deprivation compared to normal NSCs (from iPS or H9 NSCs). Therefore, these differentiated cells may produce a human HD cell model useful in the study of HD mechanisms and drug screening. |
format | Text |
id | pubmed-2966296 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29662962010-10-29 Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells Zhang, Ningzhe An, Mahru C. Montoro, Daniel Ellerby, Lisa M. PLoS Curr Huntington Disease Huntington’s disease (HD) is a dominantly inherited neurodegenerative disease caused by a CAG repeat expansion in the first exon of the gene Huntingtin (Htt). A dramatic pathological change in HD is the massive loss of striatal neurons as the disease progresses. A useful advance in HD would be the generation of a human-derived HD model to use for drug screening and understanding mechanisms of HD. We utilized the recently established human iPS cell line derived from HD patient fibroblasts to derive neuronal precursors and human striatal neurons. To achieve this goal, the differentiation of the HD-iPS cells into striatal fate required several steps. First, we generated nestin+/PAX6+/SOX1+/OCT4- neural stem cells (NSCs) from HD-iPS cells using the method of embryoid body formation. HD-NSCs were then subjected to a differentiation condition combining morphogens and neurotrophins to induce striatal lineage commitment. Striatal neuronal precursors/immature neurons stained with β-III tubulin, calbindin and GABA but not DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) were produced in this step. Finally, maturation and terminal differentiation of the striatal neuronal precursors/immature neurons resulted in striatal neurons expressing markers like DARPP-32. The HD-iPS cells derived striatal neurons and neuronal precursors contain the same CAG expansion as the mutation in the HD patient from whom the iPS cell line was established. Moreover, the HD-NSCs showed enhanced caspase activity upon growth factor deprivation compared to normal NSCs (from iPS or H9 NSCs). Therefore, these differentiated cells may produce a human HD cell model useful in the study of HD mechanisms and drug screening. Public Library of Science 2010-10-28 /pmc/articles/PMC2966296/ /pubmed/21037797 http://dx.doi.org/10.1371/currents.RRN1193 Text en http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Huntington Disease Zhang, Ningzhe An, Mahru C. Montoro, Daniel Ellerby, Lisa M. Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title | Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title_full | Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title_fullStr | Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title_full_unstemmed | Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title_short | Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells |
title_sort | characterization of human huntington's disease cell model from induced pluripotent stem cells |
topic | Huntington Disease |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966296/ https://www.ncbi.nlm.nih.gov/pubmed/21037797 http://dx.doi.org/10.1371/currents.RRN1193 |
work_keys_str_mv | AT zhangningzhe characterizationofhumanhuntingtonsdiseasecellmodelfrominducedpluripotentstemcells AT anmahruc characterizationofhumanhuntingtonsdiseasecellmodelfrominducedpluripotentstemcells AT montorodaniel characterizationofhumanhuntingtonsdiseasecellmodelfrominducedpluripotentstemcells AT ellerbylisam characterizationofhumanhuntingtonsdiseasecellmodelfrominducedpluripotentstemcells |