Cargando…

Quantitative analysis of cell composition and purity of human pancreatic islet preparations

Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed accurate identification and qu...

Descripción completa

Detalles Bibliográficos
Autores principales: Pisania, Anna, Weir, Gordon C., O'Neil, John J., Omer, Abdulkadir, Tchipashvili, Vaja, Lei, Ji, Colton, Clark K., Bonner-Weir, Susan
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966538/
https://www.ncbi.nlm.nih.gov/pubmed/20697378
http://dx.doi.org/10.1038/labinvest.2010.124
Descripción
Sumario:Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed accurate identification and quantification of cell types with measured cell number fractions (mean ± SEM) 35.6 ± 2.1% β-cells, 12.6 ± 1.0% non-β-islet cells, (48.3 ± 2.6% total islet cells), 22.7 ± 1.5% duct cells, and 25.3 ± 1.8% acinar cells. Of the islet cells, 73.6 ± 1.7% were β cells. For comparison to the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β cells were 86.5 ± 1.1% of the total islet cell volume and 61.2 ± 0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates gave 1560 ± 20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140 ± 15 were β cells. To test if LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analysis correlated linearly with excellent agreement (R(2) = 0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islets preparations and can help us understand many of the discrepancies of islet composition in the literature.