Cargando…
Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations
SCN9A encodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause s...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966863/ https://www.ncbi.nlm.nih.gov/pubmed/20635406 http://dx.doi.org/10.1002/humu.21325 |
_version_ | 1782189619064864768 |
---|---|
author | Cox, James J Sheynin, Jony Shorer, Zamir Reimann, Frank Nicholas, Adeline K Zubovic, Lorena Baralle, Marco Wraige, Elizabeth Manor, Esther Levy, Jacov Woods, C Geoffery Parvari, Ruti |
author_facet | Cox, James J Sheynin, Jony Shorer, Zamir Reimann, Frank Nicholas, Adeline K Zubovic, Lorena Baralle, Marco Wraige, Elizabeth Manor, Esther Levy, Jacov Woods, C Geoffery Parvari, Ruti |
author_sort | Cox, James J |
collection | PubMed |
description | SCN9A encodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-ΔR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7. © 2010 Wiley-Liss, Inc. |
format | Text |
id | pubmed-2966863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-29668632010-11-02 Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations Cox, James J Sheynin, Jony Shorer, Zamir Reimann, Frank Nicholas, Adeline K Zubovic, Lorena Baralle, Marco Wraige, Elizabeth Manor, Esther Levy, Jacov Woods, C Geoffery Parvari, Ruti Hum Mutat Mutation in Brief SCN9A encodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-ΔR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7. © 2010 Wiley-Liss, Inc. Wiley Subscription Services, Inc., A Wiley Company 2010-09 /pmc/articles/PMC2966863/ /pubmed/20635406 http://dx.doi.org/10.1002/humu.21325 Text en Copyright © 2010 Wiley-Liss, Inc., A Wiley Company http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Mutation in Brief Cox, James J Sheynin, Jony Shorer, Zamir Reimann, Frank Nicholas, Adeline K Zubovic, Lorena Baralle, Marco Wraige, Elizabeth Manor, Esther Levy, Jacov Woods, C Geoffery Parvari, Ruti Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title | Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title_full | Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title_fullStr | Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title_full_unstemmed | Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title_short | Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations |
title_sort | congenital insensitivity to pain: novel scn9a missense and in-frame deletion mutations |
topic | Mutation in Brief |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966863/ https://www.ncbi.nlm.nih.gov/pubmed/20635406 http://dx.doi.org/10.1002/humu.21325 |
work_keys_str_mv | AT coxjamesj congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT sheyninjony congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT shorerzamir congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT reimannfrank congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT nicholasadelinek congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT zuboviclorena congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT barallemarco congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT wraigeelizabeth congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT manoresther congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT levyjacov congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT woodscgeoffery congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations AT parvariruti congenitalinsensitivitytopainnovelscn9amissenseandinframedeletionmutations |