Cargando…

Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells

BACKGROUND: The status of estrogen receptor-α (ERα) is critical to the clinical prognosis and therapeutic approach in breast cancer. ERα-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuanyuan, Yuan, Yih-Ying, Meeran, Syed M, Tollefsbol, Trygve O
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967543/
https://www.ncbi.nlm.nih.gov/pubmed/20946668
http://dx.doi.org/10.1186/1476-4598-9-274
_version_ 1782189683695943680
author Li, Yuanyuan
Yuan, Yih-Ying
Meeran, Syed M
Tollefsbol, Trygve O
author_facet Li, Yuanyuan
Yuan, Yih-Ying
Meeran, Syed M
Tollefsbol, Trygve O
author_sort Li, Yuanyuan
collection PubMed
description BACKGROUND: The status of estrogen receptor-α (ERα) is critical to the clinical prognosis and therapeutic approach in breast cancer. ERα-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that epigenetic regulation plays a major role in ERα silencing in human breast cancer cells. Dietary green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is believed to be an anticancer agent in part through its regulation of epigenetic processes. RESULTS: In our current studies, we found that EGCG can reactivate ERα expression in ERα-negative MDA-MB-231 breast cancer cells. Combination studies using EGCG with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), revealed a synergistic effect of reactivation of ERα expression in ERα-negative breast cancer cells. Reactivation of ERα expression by EGCG and TSA treatment was found to sensitize ERα-dependent cellular responses to activator 17β-estradiol (E(2)) and antagonist tamoxifen in ERα-negative breast cancer cells. We also found that EGCG can lead to remodeling of the chromatin structure of the ERα promoter by altering histone acetylation and methylation status thereby resulting in ERα reactivation. A decreased binding of the transcription repressor complex, Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1, in the regulatory region of the ERα promoter also contributes to ERα transcriptional activation through treatment with EGCG and/or TSA. CONCLUSIONS: Collectively, these studies show that green tea EGCG can restore ERα expression by regulating epigenetic mechanisms, and this effect is enhanced when combined with an HDAC inhibitor. This study will facilitate more effective uses of combination approaches in breast cancer therapy and will help to explore more effective chemotherapeutic strategies toward hormone-resistant breast cancer.
format Text
id pubmed-2967543
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29675432010-11-02 Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells Li, Yuanyuan Yuan, Yih-Ying Meeran, Syed M Tollefsbol, Trygve O Mol Cancer Research BACKGROUND: The status of estrogen receptor-α (ERα) is critical to the clinical prognosis and therapeutic approach in breast cancer. ERα-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that epigenetic regulation plays a major role in ERα silencing in human breast cancer cells. Dietary green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is believed to be an anticancer agent in part through its regulation of epigenetic processes. RESULTS: In our current studies, we found that EGCG can reactivate ERα expression in ERα-negative MDA-MB-231 breast cancer cells. Combination studies using EGCG with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), revealed a synergistic effect of reactivation of ERα expression in ERα-negative breast cancer cells. Reactivation of ERα expression by EGCG and TSA treatment was found to sensitize ERα-dependent cellular responses to activator 17β-estradiol (E(2)) and antagonist tamoxifen in ERα-negative breast cancer cells. We also found that EGCG can lead to remodeling of the chromatin structure of the ERα promoter by altering histone acetylation and methylation status thereby resulting in ERα reactivation. A decreased binding of the transcription repressor complex, Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1, in the regulatory region of the ERα promoter also contributes to ERα transcriptional activation through treatment with EGCG and/or TSA. CONCLUSIONS: Collectively, these studies show that green tea EGCG can restore ERα expression by regulating epigenetic mechanisms, and this effect is enhanced when combined with an HDAC inhibitor. This study will facilitate more effective uses of combination approaches in breast cancer therapy and will help to explore more effective chemotherapeutic strategies toward hormone-resistant breast cancer. BioMed Central 2010-10-14 /pmc/articles/PMC2967543/ /pubmed/20946668 http://dx.doi.org/10.1186/1476-4598-9-274 Text en Copyright ©2010 Li et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Li, Yuanyuan
Yuan, Yih-Ying
Meeran, Syed M
Tollefsbol, Trygve O
Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title_full Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title_fullStr Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title_full_unstemmed Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title_short Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells
title_sort synergistic epigenetic reactivation of estrogen receptor-α (erα) by combined green tea polyphenol and histone deacetylase inhibitor in erα-negative breast cancer cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967543/
https://www.ncbi.nlm.nih.gov/pubmed/20946668
http://dx.doi.org/10.1186/1476-4598-9-274
work_keys_str_mv AT liyuanyuan synergisticepigeneticreactivationofestrogenreceptoraerabycombinedgreenteapolyphenolandhistonedeacetylaseinhibitorineranegativebreastcancercells
AT yuanyihying synergisticepigeneticreactivationofestrogenreceptoraerabycombinedgreenteapolyphenolandhistonedeacetylaseinhibitorineranegativebreastcancercells
AT meeransyedm synergisticepigeneticreactivationofestrogenreceptoraerabycombinedgreenteapolyphenolandhistonedeacetylaseinhibitorineranegativebreastcancercells
AT tollefsboltrygveo synergisticepigeneticreactivationofestrogenreceptoraerabycombinedgreenteapolyphenolandhistonedeacetylaseinhibitorineranegativebreastcancercells