Cargando…
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
This paper presents a new, automatic method of accurately extracting lesions from CT data. It first determines, at each voxel, a five-dimensional (5D) feature vector that contains intensity, shape index, and 3D spatial location. Then, nonparametric mean shift clustering forms superpixels from these...
Autores principales: | Ye, Xujiong, Beddoe, Gareth, Slabaugh, Greg |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967838/ https://www.ncbi.nlm.nih.gov/pubmed/21052498 http://dx.doi.org/10.1155/2010/983963 |
Ejemplares similares
-
Automatic glioma segmentation based on adaptive superpixel
por: Wu, Yaping, et al.
Publicado: (2019) -
Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI
por: Soltaninejad, Mohammadreza, et al.
Publicado: (2016) -
Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2016) -
Superpixel-Oriented Label Distribution Learning for Skin Lesion Segmentation
por: Zhou, Qiaoer, et al.
Publicado: (2022) -
Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images
por: Romero-Oraá, Roberto, et al.
Publicado: (2019)