Cargando…
Bis[glycinium(0.5+)] perrhenate
All the residues of the title compound, (C(2)H(5.5)NO(2))(2)[ReO(4)], are located in general crystallographic positions. The glycine molecules have usual conformations [Rodrigues Matos Beja et al. (2006 ▶). Acta Cryst. C62, o71–o72] with the H atom of the carboxylate group half-occupied, thus beari...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967868/ https://www.ncbi.nlm.nih.gov/pubmed/21581493 http://dx.doi.org/10.1107/S160053680803849X |
Sumario: | All the residues of the title compound, (C(2)H(5.5)NO(2))(2)[ReO(4)], are located in general crystallographic positions. The glycine molecules have usual conformations [Rodrigues Matos Beja et al. (2006 ▶). Acta Cryst. C62, o71–o72] with the H atom of the carboxylate group half-occupied, thus bearing a formal half-positive charge per molecule. The perrhenate anion has nearly ideal tetrahedral geometry. A large number of strong hydrogen bonds give rise to the overall three-dimensional network. A two-dimensional network, parallel to (100), is made up of strong O—H⋯O hydrogen bonds with a donor acceptor distance of 2.445 (2) Å. A large number of weaker O—H⋯O and N—H⋯O hydrogen bonds consolidates the structure into an overall three-dimensional network. |
---|