Cargando…
The MAP kinase phosphatase, MKP-1, regulates BDNF-induced axon branching
The refinement of neural circuits during development depends upon a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin BDNF plays an essential role in the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971689/ https://www.ncbi.nlm.nih.gov/pubmed/20935641 http://dx.doi.org/10.1038/nn.2655 |
Sumario: | The refinement of neural circuits during development depends upon a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin BDNF plays an essential role in the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However, the mechanisms that translate extracellular signals into axonal branch formation are incompletely understood. Here we report that the MAP kinase phosphatase-1 (MKP-1) controls axon branching. MKP-1 expression induced by BDNF signaling exerts spatio-temporal deactivation of JNK, which negatively regulates the phosphorylation of JNK substrates that impinge upon microtubule destabilization. Indeed, neurons from mkp-1 null mice were unable to produce axon branches in response to BDNF. Our results indicate a heretofore-unknown signaling mechanism to regulate axonal branching and provide a framework for studying the molecular mechanism of innervation and axonal remodeling under normal and pathological conditions. |
---|