Cargando…
Identification of high-quality cancer prognostic markers and metastasis network modules
Cancer patients are often overtreated because of a failure to identify low-risk cancer patients. Thus far, no algorithm has been able to successfully generate cancer prognostic gene signatures with high accuracy and robustness in order to identify these patients. In this paper, we developed an algor...
Autores principales: | Li, Jie, Lenferink, Anne E.G., Deng, Yinghai, Collins, Catherine, Cui, Qinghua, Purisima, Enrico O., O'Connor-McCourt, Maureen D., Wang, Edwin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972666/ https://www.ncbi.nlm.nih.gov/pubmed/20975711 http://dx.doi.org/10.1038/ncomms1033 |
Ejemplares similares
-
Corrigendum: Identification of high-quality cancer prognostic markers and metastasis
network modules
por: Li, Jie, et al.
Publicado: (2012) -
Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-β and Neu pathway signaling studies: identification of a novel model for TGF-β-induced epithelial-to-mesenchymal transition
por: Lenferink, Anne EG, et al.
Publicado: (2004) -
A map of human cancer signaling
por: Cui, Qinghua, et al.
Publicado: (2007) -
Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-β induced epithelial to mesenchymal transition
por: Hill, Jennifer J, et al.
Publicado: (2009) -
Protein evolution on a human signaling network
por: Cui, Qinghua, et al.
Publicado: (2009)