Cargando…
Discriminant analysis of principal components: a new method for the analysis of genetically structured populations
BACKGROUND: The dramatic progress in sequencing technologies offers unprecedented prospects for deciphering the organization of natural populations in space and time. However, the size of the datasets generated also poses some daunting challenges. In particular, Bayesian clustering algorithms based...
Autores principales: | Jombart, Thibaut, Devillard, Sébastien, Balloux, François |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2973851/ https://www.ncbi.nlm.nih.gov/pubmed/20950446 http://dx.doi.org/10.1186/1471-2156-11-94 |
Ejemplares similares
-
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Study of large and highly stratified population datasets by combining iterative pruning principal component analysis and structure
por: Limpiti, Tulaya, et al.
Publicado: (2011) -
Probabilistic principal component analysis for metabolomic data
por: Nyamundanda, Gift, et al.
Publicado: (2010) -
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
por: Meyer, Karin, et al.
Publicado: (2005) -
Principal component gene set enrichment (PCGSE)
por: Frost, H. Robert, et al.
Publicado: (2015)