Cargando…

Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker

Multistep synthesis in the laboratory typically requires numerous reaction vessels, each containing a different set of reactants. In contrast, cells are capable of performing highly efficient and selective multistep biosynthesis under mild conditions with all reactants simultaneously present in solu...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yu, Liu, David R.
Formato: Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974042/
https://www.ncbi.nlm.nih.gov/pubmed/20935654
http://dx.doi.org/10.1038/nnano.2010.190
Descripción
Sumario:Multistep synthesis in the laboratory typically requires numerous reaction vessels, each containing a different set of reactants. In contrast, cells are capable of performing highly efficient and selective multistep biosynthesis under mild conditions with all reactants simultaneously present in solution. If the latter approach could be applied in the laboratory, it may improve the ease, speed, and efficiency of multistep reaction sequences. Here we show that a DNA mechanical device— a DNA walker moving along a DNA track— can be used to perform a series of amine acylation reactions in a single solution without any external intervention. The multistep products generated by this primitive ribosome mimetic are programmed by the sequence of the DNA track, are unrelated to the structure of DNA, and are formed with speeds and overall yields significantly greater than those previously achieved by multistep DNA-templated small-molecule synthesis.