Cargando…
Mechanical Forces Used for Cell Fractionation Can Create Hybrid Membrane Vesicles
The ability to understand the inner works of the cell requires methods for separation of intracellular membrane-enclosed compartments. Disruption of the plasma membrane (PM) by mechanical forces to investigate the content of the cell is common practice. Whether vesicles or membranes of different sou...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974167/ https://www.ncbi.nlm.nih.gov/pubmed/21060726 |
Sumario: | The ability to understand the inner works of the cell requires methods for separation of intracellular membrane-enclosed compartments. Disruption of the plasma membrane (PM) by mechanical forces to investigate the content of the cell is common practice. Whether vesicles or membranes of different sources can fuse as a result is unclear. If such contamination occurs, conclusions based on these techniques should consider these. Utilizing an endoplasmic reticulum (ER) membrane marker and a PM marker, we were able to detect the source of membranes following the breakup of cells using flow cytometry and immuno Electron Microscopy (immuno EM). Fractionation processes produced a small fraction of new membrane entities from two distinctively different origins generated during the initial disruption steps in a temperature independent manner, stressing that defining organelles or intrinsic fusion events based on such procedures and markers are valid when exceeding the small number of vesciles fused during the fractionation process. |
---|