Cargando…
Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria
Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975363/ https://www.ncbi.nlm.nih.gov/pubmed/21060736 http://dx.doi.org/10.1128/mBio.00190-10 |
Sumario: | Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies. |
---|