Cargando…
Density based pruning for identification of differentially expressed genes from microarray data
MOTIVATION: Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by c...
Autores principales: | Hu, Jianjun, Xu, Jia |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975422/ https://www.ncbi.nlm.nih.gov/pubmed/21047384 http://dx.doi.org/10.1186/1471-2164-11-S2-S3 |
Ejemplares similares
-
Identification of Differentially Expressed Genes in Pituitary Adenomas by Integrating Analysis of Microarray Data
por: Zhao, Peng, et al.
Publicado: (2015) -
Corrigendum to “Identification of Differentially Expressed Genes in Pituitary Adenomas by Integrating Analysis of Microarray Data”
por: Zhao, Peng, et al.
Publicado: (2018) -
Identification of differentially expressed genes in microarray data in a principal component space
por: Ospina, Luis, et al.
Publicado: (2013) -
Differential analysis for high density tiling microarray data
por: Ghosh, Srinka, et al.
Publicado: (2007) -
Cotton disease identification method based on pruning
por: Zhu, Dongqin, et al.
Publicado: (2022)