Cargando…
Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized
Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge-based potentials based on pairwise distances – so-called “potentials of mean force” (PMFs) – have been center stage in the prediction and design of protein structure and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978081/ https://www.ncbi.nlm.nih.gov/pubmed/21103041 http://dx.doi.org/10.1371/journal.pone.0013714 |
_version_ | 1782191209159065600 |
---|---|
author | Hamelryck, Thomas Borg, Mikael Paluszewski, Martin Paulsen, Jonas Frellsen, Jes Andreetta, Christian Boomsma, Wouter Bottaro, Sandro Ferkinghoff-Borg, Jesper |
author_facet | Hamelryck, Thomas Borg, Mikael Paluszewski, Martin Paulsen, Jonas Frellsen, Jes Andreetta, Christian Boomsma, Wouter Bottaro, Sandro Ferkinghoff-Borg, Jesper |
author_sort | Hamelryck, Thomas |
collection | PubMed |
description | Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge-based potentials based on pairwise distances – so-called “potentials of mean force” (PMFs) – have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state – a necessary component of these potentials – is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities “reference ratio distributions” deriving from the application of the “reference ratio method.” This new view is not only of theoretical relevance but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures. |
format | Text |
id | pubmed-2978081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29780812010-11-22 Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized Hamelryck, Thomas Borg, Mikael Paluszewski, Martin Paulsen, Jonas Frellsen, Jes Andreetta, Christian Boomsma, Wouter Bottaro, Sandro Ferkinghoff-Borg, Jesper PLoS One Research Article Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge-based potentials based on pairwise distances – so-called “potentials of mean force” (PMFs) – have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state – a necessary component of these potentials – is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities “reference ratio distributions” deriving from the application of the “reference ratio method.” This new view is not only of theoretical relevance but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures. Public Library of Science 2010-11-10 /pmc/articles/PMC2978081/ /pubmed/21103041 http://dx.doi.org/10.1371/journal.pone.0013714 Text en Hamelryck et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hamelryck, Thomas Borg, Mikael Paluszewski, Martin Paulsen, Jonas Frellsen, Jes Andreetta, Christian Boomsma, Wouter Bottaro, Sandro Ferkinghoff-Borg, Jesper Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title | Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title_full | Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title_fullStr | Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title_full_unstemmed | Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title_short | Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized |
title_sort | potentials of mean force for protein structure prediction vindicated, formalized and generalized |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978081/ https://www.ncbi.nlm.nih.gov/pubmed/21103041 http://dx.doi.org/10.1371/journal.pone.0013714 |
work_keys_str_mv | AT hamelryckthomas potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT borgmikael potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT paluszewskimartin potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT paulsenjonas potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT frellsenjes potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT andreettachristian potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT boomsmawouter potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT bottarosandro potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized AT ferkinghoffborgjesper potentialsofmeanforceforproteinstructurepredictionvindicatedformalizedandgeneralized |