Cargando…
FragGeneScan: predicting genes in short and error-prone reads
The advances of next-generation sequencing technology have facilitated metagenomics research that attempts to determine directly the whole collection of genetic material within an environmental sample (i.e. the metagenome). Identification of genes directly from short reads has become an important ye...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978382/ https://www.ncbi.nlm.nih.gov/pubmed/20805240 http://dx.doi.org/10.1093/nar/gkq747 |
_version_ | 1782191254978691072 |
---|---|
author | Rho, Mina Tang, Haixu Ye, Yuzhen |
author_facet | Rho, Mina Tang, Haixu Ye, Yuzhen |
author_sort | Rho, Mina |
collection | PubMed |
description | The advances of next-generation sequencing technology have facilitated metagenomics research that attempts to determine directly the whole collection of genetic material within an environmental sample (i.e. the metagenome). Identification of genes directly from short reads has become an important yet challenging problem in annotating metagenomes, since the assembly of metagenomes is often not available. Gene predictors developed for whole genomes (e.g. Glimmer) and recently developed for metagenomic sequences (e.g. MetaGene) show a significant decrease in performance as the sequencing error rates increase, or as reads get shorter. We have developed a novel gene prediction method FragGeneScan, which combines sequencing error models and codon usages in a hidden Markov model to improve the prediction of protein-coding region in short reads. The performance of FragGeneScan was comparable to Glimmer and MetaGene for complete genomes. But for short reads, FragGeneScan consistently outperformed MetaGene (accuracy improved ∼62% for reads of 400 bases with 1% sequencing errors, and ∼18% for short reads of 100 bases that are error free). When applied to metagenomes, FragGeneScan recovered substantially more genes than MetaGene predicted (>90% of the genes identified by homology search), and many novel genes with no homologs in current protein sequence database. |
format | Text |
id | pubmed-2978382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29783822010-11-12 FragGeneScan: predicting genes in short and error-prone reads Rho, Mina Tang, Haixu Ye, Yuzhen Nucleic Acids Res Methods Online The advances of next-generation sequencing technology have facilitated metagenomics research that attempts to determine directly the whole collection of genetic material within an environmental sample (i.e. the metagenome). Identification of genes directly from short reads has become an important yet challenging problem in annotating metagenomes, since the assembly of metagenomes is often not available. Gene predictors developed for whole genomes (e.g. Glimmer) and recently developed for metagenomic sequences (e.g. MetaGene) show a significant decrease in performance as the sequencing error rates increase, or as reads get shorter. We have developed a novel gene prediction method FragGeneScan, which combines sequencing error models and codon usages in a hidden Markov model to improve the prediction of protein-coding region in short reads. The performance of FragGeneScan was comparable to Glimmer and MetaGene for complete genomes. But for short reads, FragGeneScan consistently outperformed MetaGene (accuracy improved ∼62% for reads of 400 bases with 1% sequencing errors, and ∼18% for short reads of 100 bases that are error free). When applied to metagenomes, FragGeneScan recovered substantially more genes than MetaGene predicted (>90% of the genes identified by homology search), and many novel genes with no homologs in current protein sequence database. Oxford University Press 2010-11 2010-08-30 /pmc/articles/PMC2978382/ /pubmed/20805240 http://dx.doi.org/10.1093/nar/gkq747 Text en © The Author(s) 2010. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Rho, Mina Tang, Haixu Ye, Yuzhen FragGeneScan: predicting genes in short and error-prone reads |
title | FragGeneScan: predicting genes in short and error-prone reads |
title_full | FragGeneScan: predicting genes in short and error-prone reads |
title_fullStr | FragGeneScan: predicting genes in short and error-prone reads |
title_full_unstemmed | FragGeneScan: predicting genes in short and error-prone reads |
title_short | FragGeneScan: predicting genes in short and error-prone reads |
title_sort | fraggenescan: predicting genes in short and error-prone reads |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978382/ https://www.ncbi.nlm.nih.gov/pubmed/20805240 http://dx.doi.org/10.1093/nar/gkq747 |
work_keys_str_mv | AT rhomina fraggenescanpredictinggenesinshortanderrorpronereads AT tanghaixu fraggenescanpredictinggenesinshortanderrorpronereads AT yeyuzhen fraggenescanpredictinggenesinshortanderrorpronereads |