Cargando…
Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16.F10 mouse melanomas
The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compare...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981654/ https://www.ncbi.nlm.nih.gov/pubmed/20706286 http://dx.doi.org/10.1038/cgt.2010.43 |
Sumario: | The application of electric pulses to tissues causes cell membrane destabilization, allowing exogenous molecules to enter the cells. This delivery technique can be used for plasmid gene therapy. Reporter gene expression after plasmid delivery with eight representative published protocols was compared in B16.F10 mouse melanoma tumors. This expression varied significantly based on the pulse parameters utilized for delivery. To observe the possible influence of plasmid injection and/or pulse application on endogenous gene expression, levels of stress related mRNAs four and 24 hours after delivery were determined by PCR array. Increases in mRNA levels for several inflammatory chemokines and cytokines were observed in response to plasmid injection, electric pulses alone, or the combination. This upregulation was confirmed by individual real-time reverse transcription TaqMan PCR assays. Proteins were extracted at the same time points from identically treated tumors and inflammatory protein levels were assayed by ELISA and by a custom multiplex bead array. Increases in inflammatory protein levels generally paralleled mRNA levels. Some differences were observed, which may have been due to differing expression kinetics. The observed upregulated expression of these cytokines and chemokines may aid or inhibit the therapeutic effectiveness of immune-based cancer gene therapies. |
---|