Cargando…

Phase seeding of a terahertz quantum cascade laser

The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Oustinov, Dimitri, Jukam, Nathan, Rungsawang, Rakchanok, Madéo, Julien, Barbieri, Stefano, Filloux, Pascal, Sirtori, Carlo, Marcadet, Xavier, Tignon, Jérôme, Dhillon, Sukhdeep
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982179/
https://www.ncbi.nlm.nih.gov/pubmed/20842195
http://dx.doi.org/10.1038/ncomms1068
_version_ 1782191750774784000
author Oustinov, Dimitri
Jukam, Nathan
Rungsawang, Rakchanok
Madéo, Julien
Barbieri, Stefano
Filloux, Pascal
Sirtori, Carlo
Marcadet, Xavier
Tignon, Jérôme
Dhillon, Sukhdeep
author_facet Oustinov, Dimitri
Jukam, Nathan
Rungsawang, Rakchanok
Madéo, Julien
Barbieri, Stefano
Filloux, Pascal
Sirtori, Carlo
Marcadet, Xavier
Tignon, Jérôme
Dhillon, Sukhdeep
author_sort Oustinov, Dimitri
collection PubMed
description The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy.
format Text
id pubmed-2982179
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-29821792010-11-17 Phase seeding of a terahertz quantum cascade laser Oustinov, Dimitri Jukam, Nathan Rungsawang, Rakchanok Madéo, Julien Barbieri, Stefano Filloux, Pascal Sirtori, Carlo Marcadet, Xavier Tignon, Jérôme Dhillon, Sukhdeep Nat Commun Article The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. Nature Publishing Group 2010-09 /pmc/articles/PMC2982179/ /pubmed/20842195 http://dx.doi.org/10.1038/ncomms1068 Text en Copyright © 2010, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Oustinov, Dimitri
Jukam, Nathan
Rungsawang, Rakchanok
Madéo, Julien
Barbieri, Stefano
Filloux, Pascal
Sirtori, Carlo
Marcadet, Xavier
Tignon, Jérôme
Dhillon, Sukhdeep
Phase seeding of a terahertz quantum cascade laser
title Phase seeding of a terahertz quantum cascade laser
title_full Phase seeding of a terahertz quantum cascade laser
title_fullStr Phase seeding of a terahertz quantum cascade laser
title_full_unstemmed Phase seeding of a terahertz quantum cascade laser
title_short Phase seeding of a terahertz quantum cascade laser
title_sort phase seeding of a terahertz quantum cascade laser
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982179/
https://www.ncbi.nlm.nih.gov/pubmed/20842195
http://dx.doi.org/10.1038/ncomms1068
work_keys_str_mv AT oustinovdimitri phaseseedingofaterahertzquantumcascadelaser
AT jukamnathan phaseseedingofaterahertzquantumcascadelaser
AT rungsawangrakchanok phaseseedingofaterahertzquantumcascadelaser
AT madeojulien phaseseedingofaterahertzquantumcascadelaser
AT barbieristefano phaseseedingofaterahertzquantumcascadelaser
AT fillouxpascal phaseseedingofaterahertzquantumcascadelaser
AT sirtoricarlo phaseseedingofaterahertzquantumcascadelaser
AT marcadetxavier phaseseedingofaterahertzquantumcascadelaser
AT tignonjerome phaseseedingofaterahertzquantumcascadelaser
AT dhillonsukhdeep phaseseedingofaterahertzquantumcascadelaser