Cargando…
Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
BACKGROUND: Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge...
Autores principales: | Xia, Zheng, Wu, Ling-Yun, Zhou, Xiaobo, Wong, Stephen TC |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982693/ https://www.ncbi.nlm.nih.gov/pubmed/20840733 http://dx.doi.org/10.1186/1752-0509-4-S2-S6 |
Ejemplares similares
-
Protein complex detection with semi-supervised learning in protein interaction networks
por: Shi, Lei, et al.
Publicado: (2011) -
Protein Ranking by Semi-Supervised Network Propagation
por: Weston, Jason, et al.
Publicado: (2006) -
Combining active learning and semi-supervised learning techniques to extract protein interaction sentences
por: Song, Min, et al.
Publicado: (2011) -
A semi-supervised boosting SVM for predicting hot spots at protein-protein Interfaces
por: Xu, Bin, et al.
Publicado: (2012) -
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
por: Costa, Ivan G, et al.
Publicado: (2007)