Cargando…
Decoding hand movement velocity from electroencephalogram signals during a drawing task
BACKGROUND: Decoding neural activities associated with limb movements is the key of motor prosthesis control. So far, most of these studies have been based on invasive approaches. Nevertheless, a few researchers have decoded kinematic parameters of single hand in non-invasive ways such as magnetoenc...
Autores principales: | Lv, Jun, Li, Yuanqing, Gu, Zhenghui |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987782/ https://www.ncbi.nlm.nih.gov/pubmed/20979665 http://dx.doi.org/10.1186/1475-925X-9-64 |
Ejemplares similares
-
Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram
por: Xu, Baoguo, et al.
Publicado: (2021) -
The effect of the preferred hand on drawing movement
por: Zarandi, Zinat, et al.
Publicado: (2023) -
Decoding Algorithm of Motor Imagery Electroencephalogram Signal Based on CLRNet Network Model
por: Zhang, Chaozhu, et al.
Publicado: (2023) -
Decoding Individual Finger Movements from One Hand Using Human EEG Signals
por: Liao, Ke, et al.
Publicado: (2014) -
The effect of impaired velocity signals on goal-directed eye and hand movements
por: de la Malla, Cristina, et al.
Publicado: (2023)