Cargando…
Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes
The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precis...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987826/ https://www.ncbi.nlm.nih.gov/pubmed/21124995 http://dx.doi.org/10.1371/journal.pgen.1001208 |
_version_ | 1782192162849423360 |
---|---|
author | Rui, Yanning Bai, Jianwu Perrimon, Norbert |
author_facet | Rui, Yanning Bai, Jianwu Perrimon, Norbert |
author_sort | Rui, Yanning |
collection | PubMed |
description | The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly. |
format | Text |
id | pubmed-2987826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29878262010-12-01 Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes Rui, Yanning Bai, Jianwu Perrimon, Norbert PLoS Genet Research Article The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly. Public Library of Science 2010-11-18 /pmc/articles/PMC2987826/ /pubmed/21124995 http://dx.doi.org/10.1371/journal.pgen.1001208 Text en Rui et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rui, Yanning Bai, Jianwu Perrimon, Norbert Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title | Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title_full | Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title_fullStr | Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title_full_unstemmed | Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title_short | Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes |
title_sort | sarcomere formation occurs by the assembly of multiple latent protein complexes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987826/ https://www.ncbi.nlm.nih.gov/pubmed/21124995 http://dx.doi.org/10.1371/journal.pgen.1001208 |
work_keys_str_mv | AT ruiyanning sarcomereformationoccursbytheassemblyofmultiplelatentproteincomplexes AT baijianwu sarcomereformationoccursbytheassemblyofmultiplelatentproteincomplexes AT perrimonnorbert sarcomereformationoccursbytheassemblyofmultiplelatentproteincomplexes |