Cargando…
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
BACKGROUND: In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. RESULTS: The...
Autores principales: | Weiße, Andrea Y, Middleton, Richard H, Huisinga, Wilhelm |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987882/ https://www.ncbi.nlm.nih.gov/pubmed/21029410 http://dx.doi.org/10.1186/1752-0509-4-144 |
Ejemplares similares
-
A variational approach to parameter estimation in ordinary differential equations
por: Kaschek, Daniel, et al.
Publicado: (2012) -
Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints
por: Fiedler, Anna, et al.
Publicado: (2016) -
Discrete variable methods in ordinary differential equations
por: Henrici, Peter
Publicado: (1962) -
Ordinary differential equations
por: Miller, Richard K, et al.
Publicado: (1982) -
Likelihood-ratio test statistic for the finite-sample case in nonlinear ordinary differential equation models
por: Tönsing, Christian, et al.
Publicado: (2023)