Cargando…
Germline and somatic mosaicism for FGFR2 mutation in the mother of a child with Crouzon syndrome: Implications for genetic testing in “paternal age-effect” syndromes
Crouzon syndrome is a dominantly inherited disorder characterized by craniosynostosis and facial dysostosis, caused by mutations in the fibroblast growth factor receptor 2 (FGFR2) gene; it belongs to a class of disorders that mostly arise as de novo mutations and exhibit a near-exclusive paternal or...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988406/ https://www.ncbi.nlm.nih.gov/pubmed/20635358 http://dx.doi.org/10.1002/ajmg.a.33513 |
Sumario: | Crouzon syndrome is a dominantly inherited disorder characterized by craniosynostosis and facial dysostosis, caused by mutations in the fibroblast growth factor receptor 2 (FGFR2) gene; it belongs to a class of disorders that mostly arise as de novo mutations and exhibit a near-exclusive paternal origin of mutation and elevated paternal age (“paternal age effect”). However, even if this is the major mode of origin of mutations in paternal age-effect disorders, germline mosaicism may also occur. Here we describe the first molecularly documented evidence of germline and somatic mosaicism for FGFR2 mutation, identified in the mother of a child with Crouzon syndrome caused by a heterozygous c.1007A>G (p.Asp336Gly) substitution. Levels of maternal somatic mosaicism for this mutation, estimated by pyrosequencing, ranged from 3.3% in hair roots to 14.1% in blood. Our observation underlines the importance of parental molecular testing for accurate genetic counseling of the risk of recurrence for Crouzon, and other paternal age-effect syndromes. © 2010 Wiley-Liss, Inc. |
---|