Cargando…

LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans

The let-7 microRNA (miRNA) is an ultraconserved regulator of stem cell differentiation and developmental timing, and a candidate tumour suppressor. Here we show that LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 processing in C. elegans. We demonstrate that lin-28 is necessary and sufficien...

Descripción completa

Detalles Bibliográficos
Autores principales: Lehrbach, Nicolas J., Armisen, Javier, Lightfoot, Helen L., Murfitt, Kenneth J., Bugaut, Anthony, Balasubramanian, Shankar, Miska, Eric A.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988485/
https://www.ncbi.nlm.nih.gov/pubmed/19713957
http://dx.doi.org/10.1038/nsmb.1675
Descripción
Sumario:The let-7 microRNA (miRNA) is an ultraconserved regulator of stem cell differentiation and developmental timing, and a candidate tumour suppressor. Here we show that LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 processing in C. elegans. We demonstrate that lin-28 is necessary and sufficient to block let-7 activity in vivo; LIN-28 directly binds let-7 pre-miRNA to prevent Dicer processing. Moreover, we have identified a poly(U) polymerase, PUP-2, which regulates the stability of LIN-28 blockaded let-7 pre-miRNA, and contributes to lin-28 dependent regulation of let-7 during development. We show that PUP-2 and LIN-28 interact directly, and that LIN-28 stimulates uridylation of let-7 pre-miRNA by PUP-2 in vitro. Our results demonstrate that LIN-28 and let-7 form an ancient regulatory switch, conserved from nematodes to humans, and provide insight into the mechanism of LIN-28 action in vivo. Uridylation by a PUP-2 orthologue might regulate let-7 and additional miRNAs in other species. Given the roles of Lin28 and let-7 in stem cell and cancer biology, we propose such poly(U) polymerases are potential therapeutic targets.