Cargando…

Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas

BACKGROUND: The advent of gene expression profiling was expected to dramatically improve cancer diagnosis. However, despite intensive efforts and several successful examples, the development of profile-based diagnostic systems remains a difficult task. In the present work, we established a method to...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawarazaki, Satoru, Taniguchi, Kazuya, Shirahata, Mitsuaki, Kukita, Yoji, Kanemoto, Manabu, Mikuni, Nobuhiro, Hashimoto, Nobuo, Miyamoto, Susumu, Takahashi, Jun A, Kato, Kikuya
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988704/
https://www.ncbi.nlm.nih.gov/pubmed/21062501
http://dx.doi.org/10.1186/1755-8794-3-52
_version_ 1782192262189416448
author Kawarazaki, Satoru
Taniguchi, Kazuya
Shirahata, Mitsuaki
Kukita, Yoji
Kanemoto, Manabu
Mikuni, Nobuhiro
Hashimoto, Nobuo
Miyamoto, Susumu
Takahashi, Jun A
Kato, Kikuya
author_facet Kawarazaki, Satoru
Taniguchi, Kazuya
Shirahata, Mitsuaki
Kukita, Yoji
Kanemoto, Manabu
Mikuni, Nobuhiro
Hashimoto, Nobuo
Miyamoto, Susumu
Takahashi, Jun A
Kato, Kikuya
author_sort Kawarazaki, Satoru
collection PubMed
description BACKGROUND: The advent of gene expression profiling was expected to dramatically improve cancer diagnosis. However, despite intensive efforts and several successful examples, the development of profile-based diagnostic systems remains a difficult task. In the present work, we established a method to convert molecular classifiers based on adaptor-tagged competitive PCR (ATAC-PCR) (with a data format that is similar to that of microarrays) into classifiers based on real-time PCR. METHODS: Previously, we constructed a prognosis predictor for glioma using gene expression data obtained by ATAC-PCR, a high-throughput reverse-transcription PCR technique. The analysis of gene expression data obtained by ATAC-PCR is similar to the analysis of data from two-colour microarrays. The prognosis predictor was a linear classifier based on the first principal component (PC1) score, a weighted summation of the expression values of 58 genes. In the present study, we employed the delta-delta Ct method for measurement by real-time PCR. The predictor was converted to a Ct value-based predictor using linear regression. RESULTS: We selected UBL5 as the reference gene from the group of genes with expression patterns that were most similar to the median expression level from the previous profiling study. The number of diagnostic genes was reduced to 27 without affecting the performance of the prognosis predictor. PC1 scores calculated from the data obtained by real-time PCR showed a high linear correlation (r = 0.94) with those obtained by ATAC-PCR. The correlation for individual gene expression patterns (r = 0.43 to 0.91) was smaller than for PC1 scores, suggesting that errors of measurement were likely cancelled out during the weighted summation of the expression values. The classification of a test set (n = 36) by the new predictor was more accurate than histopathological diagnosis (log rank p-values, 0.023 and 0.137, respectively) for predicting prognosis. CONCLUSION: We successfully converted a molecular classifier obtained by ATAC-PCR into a Ct value-based predictor. Our conversion procedure should also be applicable to linear classifiers obtained from microarray data. Because errors in measurement are likely to be cancelled out during the calculation, the conversion of individual gene expression is not an appropriate procedure. The predictor for gliomas is still in the preliminary stages of development and needs analytical clinical validation and clinical utility studies.
format Text
id pubmed-2988704
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29887042010-12-06 Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas Kawarazaki, Satoru Taniguchi, Kazuya Shirahata, Mitsuaki Kukita, Yoji Kanemoto, Manabu Mikuni, Nobuhiro Hashimoto, Nobuo Miyamoto, Susumu Takahashi, Jun A Kato, Kikuya BMC Med Genomics Technical Advance BACKGROUND: The advent of gene expression profiling was expected to dramatically improve cancer diagnosis. However, despite intensive efforts and several successful examples, the development of profile-based diagnostic systems remains a difficult task. In the present work, we established a method to convert molecular classifiers based on adaptor-tagged competitive PCR (ATAC-PCR) (with a data format that is similar to that of microarrays) into classifiers based on real-time PCR. METHODS: Previously, we constructed a prognosis predictor for glioma using gene expression data obtained by ATAC-PCR, a high-throughput reverse-transcription PCR technique. The analysis of gene expression data obtained by ATAC-PCR is similar to the analysis of data from two-colour microarrays. The prognosis predictor was a linear classifier based on the first principal component (PC1) score, a weighted summation of the expression values of 58 genes. In the present study, we employed the delta-delta Ct method for measurement by real-time PCR. The predictor was converted to a Ct value-based predictor using linear regression. RESULTS: We selected UBL5 as the reference gene from the group of genes with expression patterns that were most similar to the median expression level from the previous profiling study. The number of diagnostic genes was reduced to 27 without affecting the performance of the prognosis predictor. PC1 scores calculated from the data obtained by real-time PCR showed a high linear correlation (r = 0.94) with those obtained by ATAC-PCR. The correlation for individual gene expression patterns (r = 0.43 to 0.91) was smaller than for PC1 scores, suggesting that errors of measurement were likely cancelled out during the weighted summation of the expression values. The classification of a test set (n = 36) by the new predictor was more accurate than histopathological diagnosis (log rank p-values, 0.023 and 0.137, respectively) for predicting prognosis. CONCLUSION: We successfully converted a molecular classifier obtained by ATAC-PCR into a Ct value-based predictor. Our conversion procedure should also be applicable to linear classifiers obtained from microarray data. Because errors in measurement are likely to be cancelled out during the calculation, the conversion of individual gene expression is not an appropriate procedure. The predictor for gliomas is still in the preliminary stages of development and needs analytical clinical validation and clinical utility studies. BioMed Central 2010-11-10 /pmc/articles/PMC2988704/ /pubmed/21062501 http://dx.doi.org/10.1186/1755-8794-3-52 Text en Copyright ©2010 Kawarazaki et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Advance
Kawarazaki, Satoru
Taniguchi, Kazuya
Shirahata, Mitsuaki
Kukita, Yoji
Kanemoto, Manabu
Mikuni, Nobuhiro
Hashimoto, Nobuo
Miyamoto, Susumu
Takahashi, Jun A
Kato, Kikuya
Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title_full Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title_fullStr Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title_full_unstemmed Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title_short Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas
title_sort conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time pcr: a prognosis predictor for gliomas
topic Technical Advance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988704/
https://www.ncbi.nlm.nih.gov/pubmed/21062501
http://dx.doi.org/10.1186/1755-8794-3-52
work_keys_str_mv AT kawarazakisatoru conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT taniguchikazuya conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT shirahatamitsuaki conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT kukitayoji conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT kanemotomanabu conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT mikuninobuhiro conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT hashimotonobuo conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT miyamotosusumu conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT takahashijuna conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas
AT katokikuya conversionofamolecularclassifierobtainedbygeneexpressionprofilingintoaclassifierbasedonrealtimepcraprognosispredictorforgliomas