Cargando…

Oromotor variability in children with mild spastic cerebral palsy: a kinematic study of speech motor control

BACKGROUND: Treating motor speech dysfunction in children with CP requires an understanding of the mechanism underlying speech motor control. However, there is a lack of literature in quantitative measures of motor control, which may potentially characterize the nature of the speech impairments in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chia-ling, Chen, Hsieh-ching, Hong, Wei-hsien, Yang, Fan-pei Gloria, Yang, Liang-yi, Wu, Ching-yi
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988806/
https://www.ncbi.nlm.nih.gov/pubmed/20979638
http://dx.doi.org/10.1186/1743-0003-7-54
Descripción
Sumario:BACKGROUND: Treating motor speech dysfunction in children with CP requires an understanding of the mechanism underlying speech motor control. However, there is a lack of literature in quantitative measures of motor control, which may potentially characterize the nature of the speech impairments in these children. This study investigated speech motor control in children with cerebral palsy (CP) using kinematic analysis. METHODS: We collected 10 children with mild spastic CP, aged 4.8 to 7.5 years, and 10 age-matched children with typical development (TD) from rehabilitation department at a tertiary hospital. All children underwent analysis of percentage of consonants correct (PCC) and kinematic analysis of speech tasks: poly-syllable (PS) and mono-syllable (MS) tasks using the Vicon Motion 370 system integrated with a digital camcorder. Kinematic parameters included spatiotemporal indexes (STIs), and average values and coefficients of variation (CVs) of utterance duration, peak oral opening displacement and velocity. An ANOVA was conducted to determine whether PCC and kinematic data significantly differed between groups. RESULTS: CP group had relatively lower PCCs (80.0-99.0%) than TD group (p = 0.039). CP group had higher STIs in PS speech tasks, but not in MS tasks, than TD group did (p = 0.001). The CVs of utterance duration for MS and PS tasks of children with CP were at least three times as large as those of TD children (p < 0.01). However, average values of utterance duration, peak oral opening displacement and velocity and CVs of other kinematic data for both tasks did not significantly differ between two groups. CONCLUSION: High STI values and high variability on utterance durations in children with CP reflect deficits in relative spatial and/or especially temporal control for speech in the CP participants compared to the TD participants. Children with mild spastic CP may have more difficulty in processing increased articulatory demands and resulted in greater oromotor variability than normal children. The kinematic data such as STIs can be used as indices for detection of speech motor control impairments in children with mild CP and assessment of the effectiveness in the treatment.