Cargando…
Intravesical Dimethyl Sulfoxide Inhibits Acute and Chronic Bladder Inflammation in Transgenic Experimental Autoimmune Cystitis Models
New animal models are greatly needed in interstitial cystitis/painful bladder syndrome (IC/PBS) research. We recently developed a novel transgenic cystitis model (URO-OVA mice) that mimics certain key aspects of IC/PBS pathophysiology. This paper aimed to determine whether URO-OVA cystitis model was...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989383/ https://www.ncbi.nlm.nih.gov/pubmed/21113298 http://dx.doi.org/10.1155/2011/937061 |
Sumario: | New animal models are greatly needed in interstitial cystitis/painful bladder syndrome (IC/PBS) research. We recently developed a novel transgenic cystitis model (URO-OVA mice) that mimics certain key aspects of IC/PBS pathophysiology. This paper aimed to determine whether URO-OVA cystitis model was responsive to intravesical dimethyl sulfoxide (DMSO) and if so identify the mechanisms of DMSO action. URO-OVA mice developed acute cystitis upon adoptive transfer of OVA-specific OT-I splenocytes. Compared to PBS-treated bladders, the bladders treated with 50% DMSO exhibited markedly reduced bladder histopathology and expression of various inflammatory factor mRNAs. Intravesical DMSO treatment also effectively inhibited bladder inflammation in a spontaneous chronic cystitis model (URO-OVA/OT-I mice). Studies further revealed that DMSO could impair effector T cells in a dose-dependent manner in vitro. Taken together, our results suggest that intravesical DMSO improves the bladder histopathology of IC/PBS patients because of its ability to interfere with multiple inflammatory and bladder cell types. |
---|