Cargando…
Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters
BACKGROUND: Irregularly shaped spatial clusters are difficult to delineate. A cluster found by an algorithm often spreads through large portions of the map, impacting its geographical meaning. Penalized likelihood methods for Kulldorff's spatial scan statistics have been used to control the exc...
Autores principales: | Cançado, André LF, Duarte, Anderson R, Duczmal, Luiz H, Ferreira, Sabino J, Fonseca, Carlos M, Gontijo, Eliane CDM |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990730/ https://www.ncbi.nlm.nih.gov/pubmed/21034451 http://dx.doi.org/10.1186/1476-072X-9-55 |
Ejemplares similares
-
Data-driven inference for the spatial scan statistic
por: Almeida, Alexandre CL, et al.
Publicado: (2011) -
Nonparametric intensity bounds for the delineation of spatial clusters
por: Oliveira, Fernando LP, et al.
Publicado: (2011) -
StarScan: A Novel Scan Statistic for Irregularly-Shaped Spatial
Clusters
por: Somanchi, Sriram, et al.
Publicado: (2015) -
Spatial Scan Statistics for Models with Excess Zeros and Overdispersion
por: de Lima, Max Sousa, et al.
Publicado: (2013) -
Dry Climate as a Predictor of Chagas’ Disease Irregular
Clusters: A Covariate Study
por: Duczmal, Luiz H., et al.
Publicado: (2015)