Cargando…
The effects of head movement on dual-axis cervical accelerometry signals
BACKGROUND: Head motions can severely affect dual-axis cervical acceloremetry signals. A complete understanding of the effects of head motion is required before a robust accelerometry-based medical device can be developed. In this paper, we examine the spectral characteristics of dual-axis cervical...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990744/ https://www.ncbi.nlm.nih.gov/pubmed/20977753 http://dx.doi.org/10.1186/1756-0500-3-269 |
_version_ | 1782192508340535296 |
---|---|
author | Sejdić, Ervin Steele, Catriona M Chau, Tom |
author_facet | Sejdić, Ervin Steele, Catriona M Chau, Tom |
author_sort | Sejdić, Ervin |
collection | PubMed |
description | BACKGROUND: Head motions can severely affect dual-axis cervical acceloremetry signals. A complete understanding of the effects of head motion is required before a robust accelerometry-based medical device can be developed. In this paper, we examine the spectral characteristics of dual-axis cervical accelerometry signals in the absence of swallowing but in the presence of head motions. FINDINGS: Data from 50 healthy adults were collected while participants performed five different head motions. Three different spectral features were extracted from each recording: peak frequency, spectral centroid and bandwidth. Statistical analyses showed that peak frequencies are independent of the type of head motion, participant gender and age. However, spectral centroids are statistically different between the anterior-posterior (A-P) and superior-inferior (S-I) directions and between different motion. Additionally, statistically different bandwidths are observed for head tilts down and back between the A-P and the S-I directions. CONCLUSIONS: These differences indicate that head motions induce additional non-dominant spectral components in dual-axis cervical recordings. The results presented here suggest that head motion ought to be considered in the development of medical devices based on dual-axis cervical accelerometery signals. |
format | Text |
id | pubmed-2990744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29907442010-12-13 The effects of head movement on dual-axis cervical accelerometry signals Sejdić, Ervin Steele, Catriona M Chau, Tom BMC Res Notes Short Report BACKGROUND: Head motions can severely affect dual-axis cervical acceloremetry signals. A complete understanding of the effects of head motion is required before a robust accelerometry-based medical device can be developed. In this paper, we examine the spectral characteristics of dual-axis cervical accelerometry signals in the absence of swallowing but in the presence of head motions. FINDINGS: Data from 50 healthy adults were collected while participants performed five different head motions. Three different spectral features were extracted from each recording: peak frequency, spectral centroid and bandwidth. Statistical analyses showed that peak frequencies are independent of the type of head motion, participant gender and age. However, spectral centroids are statistically different between the anterior-posterior (A-P) and superior-inferior (S-I) directions and between different motion. Additionally, statistically different bandwidths are observed for head tilts down and back between the A-P and the S-I directions. CONCLUSIONS: These differences indicate that head motions induce additional non-dominant spectral components in dual-axis cervical recordings. The results presented here suggest that head motion ought to be considered in the development of medical devices based on dual-axis cervical accelerometery signals. BioMed Central 2010-10-26 /pmc/articles/PMC2990744/ /pubmed/20977753 http://dx.doi.org/10.1186/1756-0500-3-269 Text en Copyright ©2010 Sejdić et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Sejdić, Ervin Steele, Catriona M Chau, Tom The effects of head movement on dual-axis cervical accelerometry signals |
title | The effects of head movement on dual-axis cervical accelerometry signals |
title_full | The effects of head movement on dual-axis cervical accelerometry signals |
title_fullStr | The effects of head movement on dual-axis cervical accelerometry signals |
title_full_unstemmed | The effects of head movement on dual-axis cervical accelerometry signals |
title_short | The effects of head movement on dual-axis cervical accelerometry signals |
title_sort | effects of head movement on dual-axis cervical accelerometry signals |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990744/ https://www.ncbi.nlm.nih.gov/pubmed/20977753 http://dx.doi.org/10.1186/1756-0500-3-269 |
work_keys_str_mv | AT sejdicervin theeffectsofheadmovementondualaxiscervicalaccelerometrysignals AT steelecatrionam theeffectsofheadmovementondualaxiscervicalaccelerometrysignals AT chautom theeffectsofheadmovementondualaxiscervicalaccelerometrysignals AT sejdicervin effectsofheadmovementondualaxiscervicalaccelerometrysignals AT steelecatrionam effectsofheadmovementondualaxiscervicalaccelerometrysignals AT chautom effectsofheadmovementondualaxiscervicalaccelerometrysignals |